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ABSTRACT

Minimum ClassificationError (MCE) training is diffi-
cult to applyto languagemodelingdueto inherentscarcity
of training data(N-bestlists). However, a whole-sentence
exponentialanguagemodelis particularlysuitablefor MCE
training, becauset canusea relatively small numberof
powerful featuresto captureglobal sententiaphenomena.
We review the model, discussfeatureinduction, find fea-
turesin boththe BroadcasNews andSwitchboardlomains,
andbuild an MCE-trainedmodelfor the latter. Our exper
imentsshowv that even modelswith relatively few features
areproneto overfitting andaresensitve to initial parameter
setting,leadingusto examinealternatve weight optimiza-
tion criteriaandsearchalgorithms.

1. MCE FOR LANGUAGE MODELING

Languagemodelsaretypically usedn thecontext of aBayesian

classifier usuallyfilling the role of the prior, asin speech
recognition:

s* = arg max P(s|a) = argmax P(a|s) - P(s)

wherea is theincomingacousticsignalands is a sen-
tenceor utterance.

If theacoustionodelstructureP (a|s) andthelanguage
model structure P(s) are correct,and if thereis enough
acoustiadataandlanguagelatato estimateheirparameters
reliably, thenusinga maximumlikelihood estimate(MLE)
for P(s) in theabove classifieris guaranteedo be optimal.
In practice,of course,noneof theseassumption$iold. A
temptingalternatie is thusto setthe languagemodelpa-
rametergo directly minimizerecognitionerrorrate.

This approachcalled discriminative training or Mini-
mum ClassificatiorError (MCE) training,hasbeenusedin
acousticmodelingwith somesuccesd1]. But MCE has
traditionally beendifficult to apply to languagemodeling,
becausef the very large numberof tunableparameterin
a languagemodel, as comparedwith the modestamounts

of utterancesvailablefor directly minimizing recognition
errors. In fact, the amountof dataavailable for language
model MCE training (thousandsof utterances)s several
ordersof magnitudesmallerthan that available for MLE
training(typically in the hundred=f millions of words).In
contrastjn acoustictrainingthe samedatacanbe usedfor
eitherMCE or MLE training.

As aresult,theonly languagemodelrelatedMCE train-
ing in mostspeechrecognitionsystemss in determining
optimalvaluesfor thelanguagemodelweight(andperhaps
theword insertionpenalty noisepenalty etc.) from a setof
developmentN-bestlists. This is typically doneasfollows.
Let AS(h) = log P(A|S = h) bethe“acousticscore”of a
givenhypothesis:, let LS(h) = log P(S = h) beits “lan-
guagescore”,andlet Nyqs (h) andNpeise (2) bethenumber
of wordsandnoisesoundsin the hypothesisyespectrely.
Thenthetotal weightedscorefor A is:

WSx(h) = AS(h)4+A1-LS(h)4+A2-Nwas(h)+A3- Nnoise (h)
1)
For agiven ), the hypothesen a given N-bestlist can
be sorted,andthe numberof errorsin the highestscoring
hypothesisanbecounted Parametesettinggor X arethen
soughtto minimize the Word Error Rate(WER) of a given
developmentsetof N-bestlists. This is typically doneus-
ing a heuristicgrid searchsuchas Pawell’s algorithm[?],
which searcheshe spacedefinedby the As. Note thatthe
searchs not guaranteedb find the globalminimum. How-
ever, giventhe low dimensionalityof the parametespace
(3 in thisexample) thisis nota seriougproblemin practice.
Also, thelow dimensionalityof thespaceenderghesearch
computationallyfeasible,andthe smallnumberof parame-
tersavoidsoverfitting of the modelto the developmentset.

2. MCEWITH WHOLE-SENTENCE
EXPONENTIAL LMS

Whole-utterancexponentiala.k.a.maximumentropy)an-
guagemodels[2, 3, 4, 5] areof theform:



P(s) = %Po(s) eXP[Z Ai fi(s)]

whereZ is auniversalnormalizingconstantand Py(s)
is abaselinanodel,oftenderived from anngram,e.g.:

s
Py(s) = H P(wi|wi—pt1,...,wi—1)
i=1

The f;(s)’s arefeatures — arbitrarycomputableproper
tiesof thesentenceandthe ); aretheirassociategparame-
ters.

In this typeof non-conditionamodel,a relatively small
setof featurescanbe designedhat captureglobal aspects
of theutterancesuchasits grammaticalitysemanticoher
enceetc. In fact, it canbe shown (e.g.[4]) thatmostof the
benefitin suchamodelis likely to comefrom commonfea-
tures,namelythosethat arenon-zeroa significantfraction
of thetime (asopposedo, say individual N-gramfeatures,
themajority of which areveryrare).

Conditionalexponentialmodelsare usuallytrainedus-
ing the Generalizedterative Scalingprocedure[6] or its
variant[7]. Thisresultsin the MLE of the exponentialfam-
ily. Whole-utterancexponentialmodelscan similarly be
MLE-trainedusingsampling,aswasdonein [3].

Butwhole-utterancexponentiamodelscanalsobe MCE
trained,asfollows. The log-likelihood of a modelwith &
featureds givenby

k

+ Y [Nifils)]

=1

log P(s) = —log Z + log Py(s)

Thelasttermis a weightedsum,which canbe directly
(albeit only locally) optimizedfor MCE asin equationl.
In fact, the secondterm (log Py (s)) canalsobe assignedx
weight,andthe otherfeaturef equationl canbeaddedo
themix aswell, for joint optimization.

But the issuesraisedat the end of sectionl mustnow
berevisited. First, with morethantwo or threedimensions,
a globally optimal (or even nearoptimal) solution may be
harderto find, sincethereare moreopportunitiesfor local
minima. Secondthe computationatequirementof Pow-
ell's algorithm may scalebadly, makingit difficult to do
propermodelselection(i.e. to try mary differentsetsof
features). Last, the increasein the numberof parameters
meanghatoverfitting to the developmentsetmay turn out
to bea problemafterall.

3. MCE FEATURE INDUCTION METHODOL OGY

In [5] we presente@ninteractize featureinductionmethod-
ologyfor MLE trainedexponentiaimodels.Thebasemodel,

Py(s), is usedto generatea corpusof 'pseudo-sentences’.
This corpusis comparedand contrastedwvith a corpusof
realsentencefrom the samedomain. The goalis for a hu-
manobserer to detectsystematidinguistic and/orstatisti-
cal differencesetweenthe two corpora. Whenary such
differenceis encodedhsanew featuref(s), its distribution
will differ betweenthe two sources,and addingit to the
modelis guaranteedo resultin increasedikelihood (i.e.,
reducedperpleity).

A similar methodologycan be usedfor 'hunting’ for
featuressuitablefor MCE training. Insteadof comparing
baseline-generatexntencewith realones,the humanob-
senercompareshetop-1decodehypothesem agivenset
of N-bestlists with their correspondingdranscriptswhere
the N-bestlists were derived using the baselinelanguage
model. Again, systematiadifferencesare soughtandthen
encodedn new featuresf(s).

Another variant on this themeis to comparethe true
transcriptsiot only with thetop-1hypothesedyut alsowith
otherhypotheses$urther down in the N-bestlists. The un-
derlying obsenrationis thatthe additionalhypotheseson-
tain someexamplesof recognitionerrorsthatarenot found
in the top-1 hypotheses.Theseerrors can and should be
learnedirom, sincethey mayvery well occurin futuretop-
1 recognizeoutputs.Theadditionalhypothesegffectively
increasehe amountof dataavailablefor featureinduction.
We will usea similar agumentin section6 to effectively
increaseéheamountof datafor MCE training.

4. FEATURE HUNTING IN BROADCAST NEWS

We began our featurehunting in the BroadcastNews do-
main. Using the methodologydescribedin the previous
section,we comparedop-1hypotheseandtranscriptor
respondingo over 13,000N-bestlists (some432,000refer
encewords)derived from the TREC-6developmentsetby
the SphinxGroupat CMU.

An exampleof afeaturethatemegedfrom this method-
ology is the numberof repetitionsof pronounsin a sen-
tence. For exampleif the word “her” appearedwice in a
sentencethis wascountedasa repetition. Similarly if the
words“him” and“he” appearedogethelin a sentencethis
wasalsocountedasa repetition. In atestof the approach,
we trainedanexponentiaimodelwith this single feature us-
ing MCE andPawell’ salgorithm.We foundthatthisfeature
alonereducedVER by 0.06%o0nthetrainingsetand0.05%
onaheld-outtestset(giventhe numberof referencevords,
thesadifferencesrestatisticallysignificant).

In searchingor more powerful featureswe looked at
familiesof relatedfeatures Onesuchfamily we considered
wasthe sequencef verbtensesn a sentenceWe focused
on the last verb in eachverb phrase(e.g. the word “sit-
ting” in the phrase'has beensitting”). This featurecanbe



Tablel: Ratioof probabilitiesof verbtensetransitionsbe-
tweenthetop-1hypotheseandthereferencdranscripts.
Verbtense| 1 2 3 4 5 6

1.02| 0.93| 1.05| 1.04| 0.84 | 1.13
1.04|0.84| 1.06|1.12| 0.89| 1.16
1.16| 1.04| 0.84| 1.03| 0.98 | 0.93
1.14| 0.94| 0.94| 0.87| 0.93 | 1.17
1.01|0.96| 1.06 | 1.05| 0.87 | 1.07
1.18| 1.16| 0.94| 1.31| 0.92 | 0.78
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thoughtof asalong-distancésigramof verbtensesThesix
verbtensesve usedwerel: baseform, 2: non-thirdperson
presentsingular 3: pastparticiple,4: third personpresent
singular 5: presentparticiple,and6: pasttense.First, all
thewordsin eachutteranceveretaggedfor part-of-speech
We thencreateda matrix in which every elementwasthe
numberof sentencem whicheachtensewvasfollowed(pos-
sibly atsomedistancepy someothertense Whenwe com-
paredthesematricesfor the referencetranscriptsand the
top-1hypotheseswe found somelarge differencedor cer
tain pairsof tenseqTable1). In particular the frequeny
with which one tenseis followed by the sametense(the
matrix diagonalin table 1) is generallylower in the top-1
hypotheseghanin the referenceranscripts.For example,
tense6 is only 78% aslikely to be followed by tense6 in
the top-1 hypothesessin the referencetranscripts. This
suggestshatthe baselindanguagemodelusedin deriving
theN-bestlists doesnotadequatelyapturesame-tenseor-
relations. The smallvaluesin column5 resultbecausehis
tenseis underrepresenteth the top-1 hypotheseselative
to thereferences— anothewusefulfeature.

Otherpotentiafeaturesve areconsideringncludesame-
stemcorrelationge.g.,bank,banks pankerbanking banked),
the frequeng of various parts-of-speeclfPOS)in a sen-
tence,and otherfeaturesinvolving varioustypesof long-
distancebigrams,suchasbigramsof prepositionor deter
miners.We would alsolike to developameasuref seman-
tic coherencdasedon the distribution of contentwordsin
sentenceshenusethat measureasa feature. For work in
thisdirection,se€[8].

5. APPLYING MCE TRAINING TO
SWITCHBOARD

We startedour featurehuntingin the BroadcastNews do-
main, becausave expectedthe utteranceghereto be rea-
sonablywell formed and correspondoughly to linguistic
boundariesandalsobecaus®f thelarge numberof N-best
lists availablein thatdomain. But, asthe hub5evaluation
drew near we decidedto try the approachin the Switch-
boarddomain. To this endwe receved 1143development
setN-bestlists from the SRI hub5evaluationteam.

We first attemptedo applythe featureswve haddiscor-
eredin the BroadcastNews domainto the Switchboarddo-
main. We useda cross-alidatory approacho selectfea-
turesfor inclusionin the model. We split the trainingsetin
half andusedVICE andPowell’ salgorithmto fit theweights
on onehalf of the setandthen usedtheseweightson the
otherhalf andcalculatedthe resultingchangein WER for
thisheld-outset. We examinedthefollowing sentence-heel
features:

e pronounrepetitionasdescribegreviously

¢ repetition of words, with the words groupedinto 4
classedbasedntheirfrequeng in the datasetgiving
us one featurefor the repetitionof commonwords,
a secondfor the repetitionof lesscommonwords,a
third for evenlesscommorwordsandafourthfor the
remainingwords

e countsof POSfor a groupof 26 POSfrom the Penn
Treebankagset

¢ countsof verbphrases
¢ countsof noisesJaughs pauseandmouthsnoises
e countof unknavn words(@REJECT @okens)

e countsof tense-tenssequences

WefoundWER reductionsn thehalf-datasetsnwhich
thefeatureweightswereestimatedFor example,including
all 26 POSfeatureswe obtaineda WER reductionof 0.6%.
Usingareducedsubsebf 10 POSaswell as15tense-tense
featureqselectecbasedon thosewherethe referenceran-
scriptsshovedthe mostdifferencefrom the top-1 hypothe-
ses) plusthe otherfeaturesmentionedabove, resultedin a
WER reductionof 1.36%.

However, whenwe usedtheseweightson the held-out
sets,by andlarge the gainshave vanished suggestinghat
overfittingis aseriougproblemevenwith only severaldozen
features.We werefitting up to 50 featuresin a datasebf
573 utterancestesultingin a reductionof up to 100errors.
Our otherconcern,aboutthe emegenceof local minima,
wasalsoprovenvalid: whenwe ran Powell’s algorithmon
thesamesetof featuredut usingmultiple differentstarting
valuestheresultswereunstablgor someof thefeatures.

Giventhesenggative results we becamemoreselectve
aboutour featuresusingonly a featureor two at atime in
eachcross-alidatoryexperiment.In particular we focused
on the pronounrepetitionfeatureandthe featuredor same
verb-tenseepetition.But evenin this moreselectve mode
we wereunableto significantlyimprove WER on the held-
out set. Whatever improvementswe occasionallyobtained
couldnot beprovenstatisticallysignificantdueto thesmall
sizeof theheld-utset.



Thusthefeatureghatwereusefulin theBroadcasNews
domainwere not helpful in the Switchboarddomain. This
is likely becaus¢he Switchboarddomainis lessstructured
thantheBroadcasNews domainandthe semantiandsyn-
tactic coherencehat our featurespick up in the latter are
much lessprominentin the former In addition, Switch-
boardutterancetendto beshorterwherea®urfeaturesare
likely to be more usefulin longerutterancesvhereword
repetitionsand multiple verb phrasesare more common.
Sincewe choseour featuresbasedon examinationof the
BN domain, our featuresmay have beenill-suited to the
task.

5.1. Conclusionsfrom the experiments

We concludethat local minima, training time and overfit-
ting areall significantobstaclessven whenthe numberof
dimensiongfeatures)is just a dozenor so. In continuing
this work, we planto focuson constructingewer but more
powerful features,suchasthe semanticcoherencdeature
mentionedn sectiord. Thiswill combatall threeproblems
simulataneously

In addition, we note that both the featurehuntingand
featureweightingschemesve employedusedonly thetop-
1 hypothesisn eachN-bestlist. As mentionedn section3,
this is suboptimal. The amountof dataavailablefor MCE
trainingcanbe effectively increasedy makinguseof other
hypothesegurtherdown the N-bestlist. We takethisupin
thenext section.

6. ALTERNATIVEWEIGHT OPTIMIZATION
CRITERIA

Let S; ; » representhefeaturevalue,or 'score’,of the k’th
featureasappliedto the j'th hypothesisn the N-bestlist for
utterance.. We will write S; ; to standfor the scorevector
rangingoverall valuesof k£, andW for anassociatedveight
vector Let WS; ; = W - §; 5 bethetotal weightedscore
assignedo hypothesig of utterance, andlet N E (i, j) be
the numberof errorsin thathypothesis.Thenthe objective
functiontypically usedfor N-bestrescorings:

W* = arg minz NE(i,argmin WS; ;)
w - j

This function attempsto directly minimize top-1 WER
on the developmentset. To betterutilize the otherhypoth-
esisin teh N-bestlist, onemight considersomealternatie
objective functions.For example:

W* = arg maxz RC[NE(, j), WS; ;]
W .

whereRC standgor rankcorrelation.Yetanotherchoice
is arank-weightederrormeasure:

W* = argwminz Z[NE(Z', J) - F(RANK(WSi ;))]

With f() afastdecayingunction. Finally onecoulduse
errorweightedrankor score:

W™ = argwminz Z[f(NE(i,j)) -RANK(W S, ;)]

W* = argvgnnz Z[f(NE(i,j)) (WS )]

Furthermorejn trying to overcomethe computational
burdenof Panell’ salgorithm,we havetriedto re-castveight
optimizationasa regressiorproblem.Noneof the measurs
above are suitablefor regressionthough,becausehey all
involve more than one non-linearlity For corverting into
simpleregressionAlex Rudnicky hadsuggestethefollow-
ing: LetY; ; = 1iff NE(4,j) = 0 (i.e. if thisis thecorrect
hypothesis)andY; ; = 0 otherwisethenuse:

W* = argmin E E (Yij —WSi;)°
W — =
? J

This seemsto give up on lots of informationthough.
For now, it seemswe must continueto usea grid-search
algorithm.
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